The Multi Aperture Scintillation Sensor (MASS) used in the site selection of the Thirty Meter Telescope (TMT)

نویسندگان

  • S. G. Els
  • M. Schöck
  • J. Seguel
  • W. Skidmore
  • D. Walker
  • A. Tokovinin
  • V. Kornilov
  • R. Riddle
  • T. Travouillon
  • E. Bustos
  • J. Vasquez
  • R. Blum
  • B. Gregory
  • P. Gillett
چکیده

One of the main tools used in the TMT site testing campaign is the turbulence profiler MASS. We describe empirical investigations and a side by side comparison of two MASS systems which were performed in order to identify the accuracy of MASS turbulence data and its dependence on the instrument calibration. The accuracy of the total seeing delivered by the TMT MASS systems is found to be better than 0”05. The combination of MASS and DIMM allows to observe the seeing within the first few hundred meters of the atmosphere and can be used to investigate possible correlations with meteorological parameters measured close to the ground. We also compare the detection of clouds and cirrus by means of MASS data (LOSSAM method) with measurements of the thermal emission of clouds using a net radiation sensor. These methods are compared with the visual cloud detection using all sky cameras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on the precision of the multiaperture scintillation sensor turbulence profiler (MASS) employed in the site testing campaign for the Thirty Meter Telescope.

The multiaperture scintillation sensor (MASS) has become a device widely employed to measure the altitude distribution of atmospheric turbulence. An empirical study is reported that investigates the dependence of the MASS results on the knowledge of the instrumental parameters. Also, the results of a side-by-side comparison of two MASS instruments are presented, indicating that MASS instruments...

متن کامل

Thirty Meter Telescope Site Testing I: Overview

As part of the conceptual and preliminary design processes of the Thirty Meter Telescope (TMT), the TMT site-testing team has spent the last five years measuring the atmospheric properties of five candidate mountains in North and South America with an unprecedented array of instrumentation. The site-testing period was preceded by several years of analyses selecting the five candidates: Cerros T...

متن کامل

Design of a Prototype Primary Mirror Segment Positioning Actuator for the Thirty Meter Telescope

The Thirty Meter Telescope (TMT) is a collaborative project between the California Institute of Technology (CIT), the University of California (UC), the Association of Universities for Research in Astronomy (AURA), and the Association of Canadian Universities for Research in Astronomy (ACURA). In order for the Thirty Meter Telescope (TMT) to achieve the required optical performance, each of its...

متن کامل

A Global Prospective of the Indian Optical and Near-Infrared Observational Facilities in the Field of Astronomy and Astrophysics: a review

A review of modernization and growth of ground based optical and near-infrared astrophysical observational facilities in the globe attributed to the recent technological developments in opto-mechanical, electronics and computer science areas is presented. Hubble Space Telescope (HST) and speckle and adaptive ground based imaging have obtained images better than 0.1 arc sec angular resolution br...

متن کامل

A robotic instrument for measuring high altitude atmospheric turbulence

To properly characterize the atmospheric properties of a site for a future large telescope or interferometer, it is insufficient to measure quantities, such as the full-width at half-maximum of a stellar image, that have been integrated over the entire atmosphere. A knowledge of the turbulence distribution as a function of height is necessary, since this affects the ease and degree to which ada...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008